




Preamble

The present report is a preliminary attempt to distinguish various flow

regimes in a jet flow of a stratified fluid. It points out the difficulties

associated with the linear stratification model in an unbounded fluid. It

seems that the modeling mechanism of generating linear stratification is

quite important, and that the flow structure can change according to whether

bounding walls are used to generate the stratification thermally or not.

Careful evaluation of this aspect of the interaction both experimentally and

analytically is needed to clarify the meaning of linear stratification in an

unbounded fluid.
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I NTRODUCTION

There has been considerable interest in the flow of non-homogeneous fluids.

Various aspects of such flows are well documented in the book by Yih.

Martin and Long and Pao have studied the laminar flow past a flat plate.

For buoyancy and viscous dominated flows these authors showed the presence

of upstream wakes. Kelley and Redkopp have examined the high Reynolds

number flow past the flat plate by using the systematic expansions of the

governing equations. These authors showed that for wide range of values of

Russel No. (parameter representing the value of stratification) the effect of

buoyancy on the flow field appears through second and higher approximations.

In the present report the laminar jet problem for a stably stratified fluid

is examined. For homogeneous incompressible fluids this problem has been

solved by Schlichting, Rubin and Falco examined the higher approximations by

applying matched asymptotic approximations. The later authors also showed

that the solution due to Schlichting is non-unique and this non-uniqueness is

inherent in the problems where no characteristic lenghts are available.

BASIC EQUATIONS

It is assumed that the fluid is stably stratified and the stratification is given

by linear distribution of temperature with height as:

The governing equations for the flow are the Navier-Stokes equations with

Boussinesq approximation and may be written as:
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In these equations .,P, F and T are the velocity vector, pressure, density

and temperature respectively. v0 and ko are the coefficients of kinematic0I

viscosity and thermal diffusivity; 0o is the coefficient of thermal expansion
0

g is the acceleration due to gravity and k is a unit vector along the vertical

direction. The quantities with subscript o refer to the undisturbed values

at y = o. The presence of stratification makes the problem asymmetric. Also

the assumption of linear stratification of temperature is justified only if

(L ° T ) is less than unity. (a 0 ) thus defines the vertical extent of
0 00 00 0

the region in which linear stratification may be used. In the absence of such a

constraint equation (1) leads to an inconsitency for y -. + =. This observation

regarding the linear stratification seems to be ignored by Redkopp. Full

implications of this assumption in the present context will be brought out in

the later section. Various quantities are non-dimensionalized as:
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Now, introducing the stream function, equations (2) can be written as:

whereo = aT o L, F L  U 0/g is the Froud number Pr is the Prandtl

number and Re the Reynolds number. Since the asymmetric part of the solution

has been subtracted out while defining various non-dimensional variables, the

boundary conditions for the problem can be written as:

V T CoO~z)

In order to evaluate the effect of stratification for large Reynolds number flows,

we will make use of the higher order boundary-layer theory.
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INNER SOLUTION

For infinite Reynolds number the solution of equations (3) satisfying the

boundary conditions at infinity is given by

This solution does not sat.isfy the boundary conditions on the axis of the jet.

Redefining the inner variables as

,'.- ,/l ,4  "=S c') TOO

substituting in equations (3) , we get

:[ ¢ . .2. ., r.¢
-'-e ,-  PA 1,P,  2y- '212

where 8 /FL RUL Rn (Russel no.)

For the jet, the constancy of the momentum flux in the -direction is obtained

from the momentum integral and is given as:

or

P* is included in the above expression as for a buoyancy-viscous dominated jet,

P* is not small. However for inertia dominated jets, the buoyancy terms in the

*

expression for P are of the same order as in equation (6). We will see that
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these terms are small and may be neglected in equation (6) a priori. Thus, we

get

2
which requires 8 C e. Now from equations (6), one can see that for

convective terms to be of the same order as viscous terms = 1/3 ande

-2/3 - 43-n)
= R e The buoyancy term is of the order R "  n  So the effecte " C

of stratification on the jet flow depends upon the value of n. This effect is

large or small according as n > 4/3. As compared to Kelley and Redkopp

and Redkopp's cases, the critical stratification for the jet problem is larger

than for the flow over a flat plate.

CASE (i) n <4/3

The inner expansions

T ' = T. ' -+, YI C )"rL')  . .

when substituted in equations (6) lead to

I~3 7~-4 2A- ift 0
._ TdI

In the above considerations Pr is considered to be of order unity. Equations

(8) are the familiar equations for a classical jet. Similarity solutionsAthese

equations have been obtained by Schlicting and Yh. We notice that for
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n <4/3, the effect of stratification on the jet flow is of higher order. In order

to obtain the higher-approximations, we need the first order outer flow

solution.

OUTER SOLUTION

Following the usual procedure the outer expansion for $ & T can be

written as:

The zeroth order outer solution is taken to be zero. Substituting these

expressions in equations (3), we get

'x.

once again, the Solution of (9-ii) depends upon the value of n and is given as:

for n -2/3 , we get

It may be noticed that for 4/3 >n > - 2/3, baroclinic generation of vorticity in

the outer inviscid flow becomes important to this order of analysis. For

n >-Z/3 the solution of equation (10-ii) does not match with the first order

boundary-layer solution of Schlicting and as such the second order correct
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solution requires the introduction of an intermediate layer. It will be shown

that the governing equation for this layer is similar to equation (10b) and for

n = -2/3 no such layer is required. In order to satisfy the boundary conition

on temperature, the solution of euqations (10) should be of the form

=y +4a

which leads to a finite velocity at infinity. In other words the displacement

of stream lines due to first order boundary layer induces a small velocity

~R - 1 / 3 in the outer flow. This anomalous result is due to the linear model
e

of stratification used in the present investigation which, in fact, at large

distances breaks down. This break down of the model is characteristic of zero

or non-uniform free stream velbcity. This difficulty could be avoided by

satisfying the outer boundary condition on temperature at some finite distance

say y ( 0 To)- . This choice is compatible with the linear model for

stratification. The arbitrary constant CI in (9-i) could be choosen to be

9 (a S )-. Now, for n <-2/3 , the outer solution is same as obtained by0 0o

Rubin and Falco and the effect of stratification on jet flow is shifted to higher

order approximations.

INTERMEDIATE- LAYER

For 4/3 >n >-2/3 and intermediate layer is required. The equation for

this layer is obtained by rescaling the variables as:

A. A -

A A()
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The purpose of this rescaling is to obtain a balance between convective and

buoyancy terms. The following expansions

'S = i . .

when substituted in the governing equations, lead to

A

I A,

and (O) U2'~' £/(3

Equation (12-ii) is same as (10-b). The boundary conditions for (12) can be

obtained by matching with the inner boundary-layer and outer flow. This leads

to A o * LI')
.11 (1t* ) 3

For n = -2/3, a a and the rescaling of the variables is not required and

equations (10-b) and (12) appropriately match with the boundary-layer solution.

(12-ii) can be integrated along a stream line and we get

The last equation can be solved as
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The fundamental solution for (18) has been obtained by Graham. The solution

for 0 is given as ,()

where

The expression for G is the same as for G but with r replaced by r where

Without actually calculating the integral in (19) one can easily see that the

solution (17) does match to the outer flo,,. With the expansion for the inter-

mediate-layer obtained the gauge function for the second order boundary-layer

equations can now be obtained. These equations come out to be the same as

obtained by Rulin and Falco for n < 34/33. For 4/3 >n 34/33 matching requires

the introduction of another sub layer. Because of the outer boundary condition

for the second-order boundary-layer equations (from matching with intermediate

layer) the similarity nature of the solution of Rubin and Falco is not retained

and a numerical solution to the problem is required.

BUOYANCY DOMINATED JET

For n = 4/3, the buoyancy term in the first order boundary-layer equations

is of order unity. This also represents a cross-over point where the jet is no

more inertia dominated. The pressure term in (7) also becomes of the same

order as velocity. A similarity solution for this case seems doubtful and a full

numerical solution should be sought. For n >4/3 the jet is buoyancy dominated.

The structure of the jet is determined through a balance between buoyancy and

viscous terms. This requires
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The constancy of momentum flux is determined by the pressure term in

equation (7) and is no more the one obtained previously. As shown by Pao

and Martin and Long this condition requires

e = 64(21)

From (20) and (21), we get

e~R -4/15 (n+l)
e

The convective terms are of ~R-1 /3 (n- 2) and so for n>2 are negligible.e

The region 4/3 <n < 2 is such where convection, buoyancy and viscosity are

important and the equations similar to the case for n = 4/3 should be solved.

For very large Prandtl numbers, these equations lead

The boundary conditons are

Equation 122) has already appeared in the works of Martin and Long and Pao.

The solution can be obtained in similarity form numerically.

REMARKS

From mathematical standpoint the introduction of a fictitious wall to satisfy

the boundary condition is questionable. The solution along the lines of

Murray's analysis of shear flow should be worked out, and the role of linear

stratification in an unbounded fluid clarified.
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